HomeLeetcode106. Construct Binary Tree from Inorder and Postorder Traversal - Leetcode Solutions

106. Construct Binary Tree from Inorder and Postorder Traversal – Leetcode Solutions

Description:

Given two integer arrays inorder and postorder where inorder is the inorder traversal of a binary tree and postorder is the postorder traversal of the same tree, construct and return the binary tree.

Examples:

Example 1:
Input: inorder = [9,3,15,20,7], postorder = [9,15,7,20,3]
Output: [3,9,20,null,null,15,7]

Example 2:

Input: inorder = [-1], postorder = [-1]
Output: [-1]

Solution in Python:

To solve the problem of constructing a binary tree from its inorder and postorder traversal arrays in Python, you can use a recursive approach.

Python
class Solution:
    def buildTree(self, inorder: List[int], postorder: List[int]) -> Optional[TreeNode]:
        # Create a dictionary to store the index of each value in the inorder array for quick access
        inorder_index_map = {val: idx for idx, val in enumerate(inorder)}
        
        # Define a recursive helper function to build the tree
        def helper(in_left, in_right):
            # If there are no elements to construct the subtree
            if in_left > in_right:
                return None
            
            # The last element in the current postorder list is the root of the current subtree
            val = postorder.pop()
            root = TreeNode(val)
            
            # Get the index of the root in the inorder array
            index = inorder_index_map[val]
            
            # Recursively build the right subtree
            root.right = helper(index + 1, in_right)
            # Recursively build the left subtree
            root.left = helper(in_left, index - 1)
            
            return root
        
        # Initialize the recursive function with the bounds of the inorder array
        return helper(0, len(inorder) - 1)

Explanation:

  1. Index Mapping:
    • We create a dictionary inorder_index_map to store the index of each value in the inorder array. This allows us to quickly find the root’s index in the inorder array.
  2. Helper Function:
    • The helper function is defined to construct the tree recursively. It takes two parameters, in_left and in_right, which represent the current bounds of the inorder array for the subtree being constructed.
  3. Base Case:
    • If in_left is greater than in_right, it means there are no elements left to construct the subtree, so we return None.
  4. Root Extraction:
    • The last element in the postorder list is the root of the current subtree. We pop this element from the postorder list and create a new TreeNode with this value.
  5. Inorder Index:
    • We get the index of the root value from inorder_index_map.
  6. Recursive Construction:
    • Right Subtree: We recursively build the right subtree first because in postorder traversal, the right subtree comes before the left subtree.
    • Left Subtree: We then recursively build the left subtree using the remaining elements.
  7. Return the Root:
    • After constructing the left and right subtrees, we attach them to the root node and return the root.

This approach ensures that the binary tree is reconstructed correctly from the given inorder and postorder traversal arrays. The use of the dictionary for index mapping and the recursive construction process efficiently builds the tree.

Solution in Javascript:

JavaScript
/**
 * @param {number[]} inorder
 * @param {number[]} postorder
 * @return {TreeNode}
 */
var buildTree = function(inorder, postorder) {
    // Create a map to store the index of each value in the inorder array for quick access
    const inorderIndexMap = {};
    inorder.forEach((val, index) => {
        inorderIndexMap[val] = index;
    });

    // Define a recursive helper function to build the tree
    function helper(inLeft, inRight) {
        // If there are no elements to construct the subtree
        if (inLeft > inRight) {
            return null;
        }

        // The last element in the current postorder array is the root of the current subtree
        const val = postorder.pop();
        const root = new TreeNode(val);

        // Get the index of the root in the inorder array
        const index = inorderIndexMap[val];

        // Recursively build the right subtree first because postorder processes right subtree before left subtree
        root.right = helper(index + 1, inRight);
        // Recursively build the left subtree
        root.left = helper(inLeft, index - 1);

        return root;
    }

    // Initialize the recursive function with the bounds of the inorder array
    return helper(0, inorder.length - 1);
};

Solution in Java:

Java
class Solution {
    public TreeNode buildTree(int[] inorder, int[] postorder) {
        // Create a map to store the index of each value in the inorder array for quick access
        HashMap<Integer, Integer> inorderIndexMap = new HashMap<>();
        for (int i = 0; i < inorder.length; i++) {
            inorderIndexMap.put(inorder[i], i);
        }
        
        // Initialize the postorder index to the last element
        int postorderIndex = postorder.length - 1;
        
        // Call the recursive helper function to construct the tree
        return buildTreeHelper(postorder, inorder, 0, inorder.length - 1, postorderIndex, inorderIndexMap);
    }
    
    private TreeNode buildTreeHelper(int[] postorder, int[] inorder, int inStart, int inEnd, int postIndex, HashMap<Integer, Integer> inorderIndexMap) {
        // Base case: if inStart is greater than inEnd, return null
        if (inStart > inEnd) {
            return null;
        }
        
        // Create a new TreeNode with the current root value from postorder
        TreeNode root = new TreeNode(postorder[postIndex]);
        
        // Find the index of the root value in inorder array using the map
        int inIndex = inorderIndexMap.get(root.val);
        
        // Recursive call to build the right subtree first because postorder processes right subtree before left subtree
        root.right = buildTreeHelper(postorder, inorder, inIndex + 1, inEnd, postIndex - 1, inorderIndexMap);
        // Recursive call to build the left subtree
        root.left = buildTreeHelper(postorder, inorder, inStart, inIndex - 1, postIndex - (inEnd - inIndex) - 1, inorderIndexMap);
        
        return root;
    }
}

Solution in C#:

C#
public class Solution {
    public TreeNode BuildTree(int[] inorder, int[] postorder) {
        // Dictionary to hold the indices of inorder values for quick lookup
        Dictionary<int, int> inorderIndexMap = new Dictionary<int, int>();
        for (int i = 0; i < inorder.Length; i++) {
            inorderIndexMap[inorder[i]] = i;
        }
        
        // Helper function to build the tree recursively
        return BuildTreeHelper(inorder, 0, inorder.Length - 1, postorder, 0, postorder.Length - 1, inorderIndexMap);
    }
    
    private TreeNode BuildTreeHelper(int[] inorder, int inStart, int inEnd, int[] postorder, int postStart, int postEnd, Dictionary<int, int> inorderIndexMap) {
        // Base case
        if (inStart > inEnd || postStart > postEnd) {
            return null;
        }
        
        // The last element of postorder is the root
        int rootVal = postorder[postEnd];
        TreeNode root = new TreeNode(rootVal);
        
        // Root index in inorder array
        int inorderRootIndex = inorderIndexMap[rootVal];
        
        // Numbers of nodes in left subtree
        int leftTreeSize = inorderRootIndex - inStart;
        
        // Recursively build the left and right subtrees
        root.left = BuildTreeHelper(inorder, inStart, inorderRootIndex - 1, postorder, postStart, postStart + leftTreeSize - 1, inorderIndexMap);
        root.right = BuildTreeHelper(inorder, inorderRootIndex + 1, inEnd, postorder, postStart + leftTreeSize, postEnd - 1, inorderIndexMap);
        
        return root;
    }
}

Subscribe
Notify of

0 Comments
Oldest
Newest Most Voted
Inline Feedbacks
View all comments

Popular