Description:
Given a string s
, partition s
such that every substring of the partition is a palindrome. Return all possible palindrome partitioning of s
.
Examples:
Example 1:
Input: s = "aab"
Output: [["a","a","b"],["aa","b"]]
Example 2:
Input: s = "a"
Output: [["a"]]
Solution in Python:
To solve the problem of partitioning a string such that every substring in the partition is a palindrome, we can use a backtracking approach. The key idea is to recursively try to partition the string and check if each substring is a palindrome.
Python
class Solution:
def partition(self, s: str) -> List[List[str]]:
def is_palindrome(sub: str) -> bool:
"""Check if a given string is a palindrome."""
return sub == sub[::-1]
def backtrack(start: int, path: List[str]):
"""
Backtrack to find all possible palindrome partitions.
start: the starting index for the current partition.
path: the current list of palindromic substrings.
"""
if start == len(s):
# If we've reached the end of the string, add the current path to the result.
result.append(path[:])
return
for end in range(start + 1, len(s) + 1):
current_sub = s[start:end]
if is_palindrome(current_sub):
# If the current substring is a palindrome, add it to the path and recurse.
path.append(current_sub)
backtrack(end, path)
# Backtrack by removing the last element added to the path.
path.pop()
result = []
backtrack(0, [])
return result
Explanation:
- is_palindrome function:
- This helper function checks if a given substring is a palindrome by comparing the string to its reverse.
- backtrack function:
- This function uses recursion to explore all possible partitions of the string.
- Parameters:
start
: the starting index for the current partition.path
: the current list of palindromic substrings.
- If
start
equals the length of the string, it means we have reached the end, and the current path is a valid partition. This path is added to the result list. - For each possible end index (
end
fromstart + 1
tolen(s) + 1
), we take the substring fromstart
toend
and check if it’s a palindrome. - If the substring is a palindrome, it’s added to the path, and we recurse with the new start index (
end
). - After the recursive call, we backtrack by removing the last added substring to try other possible partitions.
- result list:
- This list holds all the possible palindrome partitions of the string.
By using this approach, we ensure that we explore all possible ways to partition the string into palindromic substrings and collect all valid partitions.
Solution in Javascript:
JavaScript
/**
* @param {string} s
* @return {string[][]}
*/
var partition = function(s) {
/**
* Helper function to check if a given string is a palindrome.
* @param {string} sub - The substring to check.
* @return {boolean} - True if the substring is a palindrome, false otherwise.
*/
function isPalindrome(sub) {
return sub === sub.split('').reverse().join('');
}
/**
* Backtrack function to find all possible palindrome partitions.
* @param {number} start - The starting index for the current partition.
* @param {string[]} path - The current list of palindromic substrings.
*/
function backtrack(start, path) {
// If we've reached the end of the string, add the current path to the result.
if (start === s.length) {
result.push([...path]);
return;
}
// Try to partition the string by checking each substring.
for (let end = start + 1; end <= s.length; end++) {
let currentSub = s.slice(start, end);
if (isPalindrome(currentSub)) {
// If the current substring is a palindrome, add it to the path and recurse.
path.push(currentSub);
backtrack(end, path);
// Backtrack by removing the last element added to the path.
path.pop();
}
}
}
let result = [];
backtrack(0, []);
return result;
};
Solution in Java:
Java
import java.util.ArrayList;
import java.util.List;
class Solution {
public List<List<String>> partition(String s) {
List<List<String>> result = new ArrayList<>();
backtrack(s, 0, new ArrayList<>(), result);
return result;
}
/**
* Helper function to check if a given string is a palindrome.
* @param s - The string to check.
* @param left - The starting index of the substring to check.
* @param right - The ending index of the substring to check.
* @return boolean - True if the substring is a palindrome, false otherwise.
*/
private boolean isPalindrome(String s, int left, int right) {
while (left < right) {
if (s.charAt(left) != s.charAt(right)) {
return false;
}
left++;
right--;
}
return true;
}
/**
* Backtrack function to find all possible palindrome partitions.
* @param s - The input string.
* @param start - The starting index for the current partition.
* @param path - The current list of palindromic substrings.
* @param result - The list to store all possible palindrome partitions.
*/
private void backtrack(String s, int start, List<String> path, List<List<String>> result) {
if (start == s.length()) {
result.add(new ArrayList<>(path));
return;
}
for (int end = start; end < s.length(); end++) {
if (isPalindrome(s, start, end)) {
path.add(s.substring(start, end + 1));
backtrack(s, end + 1, path, result);
path.remove(path.size() - 1);
}
}
}
}
Solution in C#:
C#
using System;
using System.Collections.Generic;
public class Solution {
public IList<IList<string>> Partition(string s) {
var result = new List<IList<string>>();
Backtrack(s, 0, new List<string>(), result);
return result;
}
/// <summary>
/// Helper function to check if a given string is a palindrome.
/// </summary>
/// <param name="s">The string to check.</param>
/// <param name="left">The starting index of the substring to check.</param>
/// <param name="right">The ending index of the substring to check.</param>
/// <returns>True if the substring is a palindrome, false otherwise.</returns>
private bool IsPalindrome(string s, int left, int right) {
while (left < right) {
if (s[left] != s[right]) {
return false;
}
left++;
right--;
}
return true;
}
/// <summary>
/// Backtrack function to find all possible palindrome partitions.
/// </summary>
/// <param name="s">The input string.</param>
/// <param name="start">The starting index for the current partition.</param>
/// <param name="path">The current list of palindromic substrings.</param>
/// <param name="result">The list to store all possible palindrome partitions.</param>
private void Backtrack(string s, int start, List<string> path, List<IList<string>> result) {
if (start == s.Length) {
result.Add(new List<string>(path));
return;
}
for (int end = start; end < s.Length; end++) {
if (IsPalindrome(s, start, end)) {
path.Add(s.Substring(start, end - start + 1));
Backtrack(s, end + 1, path, result);
path.RemoveAt(path.Count - 1);
}
}
}
}