HomeLeetcode169. Majority Element (Hash Table) - Leetcode Solutions

169. Majority Element (Hash Table) – Leetcode Solutions

Description:

Given an array nums of size n, return the majority element.

The majority element is the element that appears more than ⌊n / 2⌋ times. You may assume that the majority element always exists in the array.

Examples:

Example 1:

Input: nums = [3,2,3]
Output: 3

Example 2:

Input: nums = [2,2,1,1,1,2,2]
Output: 2

Solution in Python:

To solve the problem of finding the majority element in an array, we can use the Boyer-Moore Voting Algorithm. This algorithm is efficient with a time complexity of O(n) and a space complexity of O(1).

Python
from typing import List

class Solution:
    def majorityElement(self, nums: List[int]) -> int:
        # Initialize the candidate for majority element and a counter
        candidate = None
        count = 0

        # Iterate through the array to find the potential majority element
        for num in nums:
            if count == 0:
                candidate = num  # Set the current element as the new candidate
                count = 1  # Reset count to 1
            elif num == candidate:
                count += 1  # Increment count if the current element matches the candidate
            else:
                count -= 1  # Decrement count if the current element does not match the candidate

        # Return the candidate as the majority element
        return candidate

# Example usage:
solution = Solution()
print(solution.majorityElement([3,2,3]))  # Output: 3
print(solution.majorityElement([2,2,1,1,1,2,2]))  # Output: 2

Explanation:

  1. Boyer-Moore Voting Algorithm:
    • The algorithm uses two variables: candidate to store the potential majority element and count to keep track of the balance between the occurrences of the candidate and other elements.
    • We iterate through the array. For each element:
      • If count is zero, we set the candidate to the current element and reset count to one.
      • If the current element is equal to the candidate, we increment count.
      • If the current element is different from the candidate, we decrement count.
  2. Final Majority Element:
    • After one pass through the array, the candidate will be the majority element because it appears more than ⌊n / 2⌋ times.

Solution in Javascript:

JavaScript
/**
 * @param {number[]} nums
 * @return {number}
 */
var majorityElement = function(nums) {
    // Initialize the candidate for majority element and a counter
    let candidate = null;
    let count = 0;

    // Iterate through the array to find the potential majority element
    for (let i = 0; i < nums.length; i++) {
        if (count === 0) {
            candidate = nums[i];  // Set the current element as the new candidate
            count = 1;  // Reset count to 1
        } else if (nums[i] === candidate) {
            count++;  // Increment count if the current element matches the candidate
        } else {
            count--;  // Decrement count if the current element does not match the candidate
        }
    }

    // Return the candidate as the majority element
    return candidate;
};

// Example usage:
console.log(majorityElement([3, 2, 3]));  // Output: 3
console.log(majorityElement([2, 2, 1, 1, 1, 2, 2]));  // Output: 2

Solution in Java:

Java
class Solution {
    public int majorityElement(int[] nums) {
        // Initialize the candidate for majority element and a counter
        int candidate = 0;
        int count = 0;

        // Iterate through the array to find the potential majority element
        for (int num : nums) {
            if (count == 0) {
                candidate = num;  // Set the current element as the new candidate
                count = 1;  // Reset count to 1
            } else if (num == candidate) {
                count++;  // Increment count if the current element matches the candidate
            } else {
                count--;  // Decrement count if the current element does not match the candidate
            }
        }

        // Return the candidate as the majority element
        return candidate;
    }

    // Example usage:
    public static void main(String[] args) {
        Solution solution = new Solution();
        System.out.println(solution.majorityElement(new int[]{3, 2, 3}));  // Output: 3
        System.out.println(solution.majorityElement(new int[]{2, 2, 1, 1, 1, 2, 2}));  // Output: 2
    }
}

Solution in C#:

C#
public class Solution {
    public int MajorityElement(int[] nums) {
        // Initialize the candidate for majority element and a counter
        int candidate = 0;
        int count = 0;

        // Iterate through the array to find the potential majority element
        foreach (int num in nums) {
            if (count == 0) {
                candidate = num;  // Set the current element as the new candidate
                count = 1;  // Reset count to 1
            } else if (num == candidate) {
                count++;  // Increment count if the current element matches the candidate
            } else {
                count--;  // Decrement count if the current element does not match the candidate
            }
        }

        // Return the candidate as the majority element
        return candidate;
    }

}    

Subscribe
Notify of

0 Comments
Oldest
Newest Most Voted
Inline Feedbacks
View all comments

Popular