HomeLeetcode189. Rotate Array - Leetcode Solutions

189. Rotate Array – Leetcode Solutions

Description

Given an integer array nums, rotate the array to the right by k steps, where k is non-negative.

Examples:

Example 1:

Input: nums = [1,2,3,4,5,6,7], k = 3
Output: [5,6,7,1,2,3,4]
Explanation:
rotate 1 steps to the right: [7,1,2,3,4,5,6]
rotate 2 steps to the right: [6,7,1,2,3,4,5]
rotate 3 steps to the right: [5,6,7,1,2,3,4]

Example 2:

Input: nums = [-1,-100,3,99], k = 2
Output: [3,99,-1,-100]
Explanation: 
rotate 1 steps to the right: [99,-1,-100,3]
rotate 2 steps to the right: [3,99,-1,-100]

Solution in Python

Python
class Solution:
    def rotate(self, nums: List[int], k: int) -> None:
        """
        Do not return anything, modify nums in-place instead.
        """
        # Step 1: Handle the case where k is greater than the length of the array
        # We use modulo operation because rotating by the length of the array brings the array back to its original state.
        k = k % len(nums)
        
        # Step 2: Reverse the entire array
        self.reverse(nums, 0, len(nums) - 1)
        
        # Step 3: Reverse the first k elements
        self.reverse(nums, 0, k - 1)
        
        # Step 4: Reverse the remaining elements
        self.reverse(nums, k, len(nums) - 1)
    
    def reverse(self, nums: List[int], start: int, end: int) -> None:
        """
        Helper function to reverse elements in the array between start and end indices.
        """
        while start < end:
            # Swap the elements at start and end
            nums[start], nums[end] = nums[end], nums[start]
            # Move the pointers towards the center
            start += 1
            end -= 1

Explanation:

  1. Modulo Operation:
    • The first step is to handle cases where k is greater than the length of the array. Rotating an array by its length results in the same array, so we calculate k % len(nums) to get the effective number of rotations.
  2. Reversing the Array:
    • The main idea behind this algorithm is that by reversing parts of the array, we can achieve the desired rotation.
    • First, reverse the entire array. For example, reversing [1, 2, 3, 4, 5, 6, 7] gives [7, 6, 5, 4, 3, 2, 1].
    • Then, reverse the first k elements. Continuing the example, reversing the first three elements gives [5, 6, 7, 4, 3, 2, 1].
    • Finally, reverse the remaining elements. Reversing the last four elements gives [5, 6, 7, 1, 2, 3, 4], which is the desired result.
  3. In-place Rotation:
    • The solution uses a helper function reverse to reverse elements in-place between two indices start and end. This is done by swapping the elements at the two indices and moving the pointers towards the center.
  4. Time and Space Complexity:
    • Time Complexity: O(n), where n is the number of elements in nums. Each element is swapped a constant number of times (once for each of the three reversals).
    • Space Complexity: O(1), since the reversal operations are done in-place without using extra space.

Solution in Javascript

JavaScript
/**
 * @param {number[]} nums
 * @param {number} k
 * @return {void} Do not return anything, modify nums in-place instead.
 */
var rotate = function(nums, k) {
    // Step 1: Handle cases where k is greater than the length of the array
    // Using modulo operator to get the effective rotation
    k = k % nums.length;

    // Step 2: Reverse the entire array
    reverse(nums, 0, nums.length - 1);

    // Step 3: Reverse the first k elements
    reverse(nums, 0, k - 1);

    // Step 4: Reverse the remaining elements
    reverse(nums, k, nums.length - 1);
};

/**
 * Helper function to reverse a portion of the array in-place
 * @param {number[]} nums - The array to be reversed
 * @param {number} start - Starting index of the portion to reverse
 * @param {number} end - Ending index of the portion to reverse
 * @return {void}
 */
function reverse(nums, start, end) {
    // Swap the elements at start and end indices until they meet in the middle
    while (start < end) {
        // Swap elements at start and end
        let temp = nums[start];
        nums[start] = nums[end];
        nums[end] = temp;

        // Move pointers towards the center
        start++;
        end--;
    }
}

Solution in Java

Java
class Solution {
    public void rotate(int[] nums, int k) {
        // Step 1: Handle cases where k is greater than the length of the array
        // Using modulo operator to get the effective rotation
        k = k % nums.length;

        // Step 2: Reverse the entire array
        reverse(nums, 0, nums.length - 1);

        // Step 3: Reverse the first k elements
        reverse(nums, 0, k - 1);

        // Step 4: Reverse the remaining elements
        reverse(nums, k, nums.length - 1);
    }

    /**
     * Helper method to reverse a portion of the array in-place.
     * @param nums - The array to be reversed.
     * @param start - Starting index of the portion to reverse.
     * @param end - Ending index of the portion to reverse.
     */
    private void reverse(int[] nums, int start, int end) {
        // Swap the elements at start and end indices until they meet in the middle
        while (start < end) {
            // Swap elements at start and end
            int temp = nums[start];
            nums[start] = nums[end];
            nums[end] = temp;

            // Move pointers towards the center
            start++;
            end--;
        }
    }
}

Solution in C#

C#
class Solution {
    public void Rotate(int[] nums, int k) {
        // Step 1: Handle cases where k is greater than the length of the array
        // Using modulo operator to get the effective rotation
        k = k % nums.Length;

        // Step 2: Reverse the entire array
        Reverse(nums, 0, nums.Length - 1);

        // Step 3: Reverse the first k elements
        Reverse(nums, 0, k - 1);

        // Step 4: Reverse the remaining elements
        Reverse(nums, k, nums.Length - 1);
    }

    /**
     * Helper method to reverse a portion of the array in-place.
     * @param nums - The array to be reversed.
     * @param start - Starting index of the portion to reverse.
     * @param end - Ending index of the portion to reverse.
     */
    private void Reverse(int[] nums, int start, int end) {
        // Swap the elements at start and end indices until they meet in the middle
        while (start < end) {
            // Swap elements at start and end
            int temp = nums[start];
            nums[start] = nums[end];
            nums[end] = temp;

            // Move pointers towards the center
            start++;
            end--;
        }
    }
}

Subscribe
Notify of

0 Comments
Oldest
Newest Most Voted
Inline Feedbacks
View all comments

Popular