HomeLeetcode215. Kth Largest Element in an Array - Leetcode Solutions

215. Kth Largest Element in an Array – Leetcode Solutions

Description

Given an integer array nums and an integer k, return the kth largest element in the array.

Note that it is the kth largest element in the sorted order, not the kth distinct element.

Can you solve it without sorting?

Examples:

Example 1:

Input: nums = [3,2,1,5,6,4], k = 2
Output: 5

Example 2:

Input: nums = [3,2,3,1,2,4,5,5,6], k = 4
Output: 4

Solution in Python

Python
import heapq

class Solution:
    def findKthLargest(self, nums: list[int], k: int) -> int:
        # Create a min-heap of size k with the first k elements of nums
        min_heap = nums[:k]
        heapq.heapify(min_heap)  # Turn the list into a heap
        
        # Iterate through the remaining elements in nums
        for num in nums[k:]:
            # If the current number is larger than the smallest element in the heap
            if num > min_heap[0]:
                # Replace the smallest element with the current number
                heapq.heapreplace(min_heap, num)
        
        # The root of the heap (min_heap[0]) is the kth largest element
        return min_heap[0]

Explanation:

  1. Heap Initialization:
    • We start by taking the first k elements from nums and converting them into a min-heap. The root of this heap will always be the smallest element among the top k largest elements we’ve encountered so far.
  2. Iterating Through the Rest of the Array:
    • We then iterate through the remaining elements of the array (nums[k:]).
    • For each element, if it is larger than the smallest element in the heap (min_heap[0]), it means this new element should be in the top k largest elements. We replace the smallest element in the heap with this new element using heapreplace.
  3. Result:
    • After processing all elements, the smallest element in our heap (min_heap[0]) will be the kth largest element in the entire array.

Time Complexity:

  • The time complexity is O(n log⁡ k), where nnn is the number of elements in nums. This is because we perform a heapify operation, which takes O(k), and then for each of the remaining n−k elements, we potentially replace the root of the heap, which takes O(log⁡ k) time.

Space Complexity:

  • The space complexity is O(k) because we are maintaining a heap of size k.

This approach is more efficient than sorting the entire array, which would have a time complexity of O(n log ⁡n).

Solution in Javascript

JavaScript
/**
 * @param {number[]} nums
 * @param {number} k
 * @return {number}
 */
var findKthLargest = function(nums, k) {
    // A helper function to maintain the min-heap property
    const heapify = (heap, i, heapSize) => {
        let smallest = i; 
        let left = 2 * i + 1;
        let right = 2 * i + 2;

        // If the left child is smaller than the current smallest
        if (left < heapSize && heap[left] < heap[smallest]) {
            smallest = left;
        }

        // If the right child is smaller than the current smallest
        if (right < heapSize && heap[right] < heap[smallest]) {
            smallest = right;
        }

        // If the smallest element is not the current element
        if (smallest !== i) {
            // Swap elements
            [heap[i], heap[smallest]] = [heap[smallest], heap[i]];

            // Recursively heapify the affected sub-tree
            heapify(heap, smallest, heapSize);
        }
    };

    // Build a min-heap of size k with the first k elements
    const minHeap = nums.slice(0, k);
    
    // Create the initial heap
    for (let i = Math.floor(k / 2) - 1; i >= 0; i--) {
        heapify(minHeap, i, k);
    }

    // Iterate through the remaining elements in nums
    for (let i = k; i < nums.length; i++) {
        if (nums[i] > minHeap[0]) {
            // Replace the root of the heap (smallest element)
            minHeap[0] = nums[i];
            
            // Re-heapify to maintain the min-heap property
            heapify(minHeap, 0, k);
        }
    }

    // The root of the heap is the kth largest element
    return minHeap[0];
};

Solution in Java

Java
import java.util.PriorityQueue;

class Solution {
    public int findKthLargest(int[] nums, int k) {
        // Create a min-heap (priority queue) to store the top k largest elements
        PriorityQueue<Integer> minHeap = new PriorityQueue<>(k);

        // Iterate over each element in the nums array
        for (int num : nums) {
            // Add the current number to the heap
            minHeap.offer(num);
            
            // If the size of the heap exceeds k, remove the smallest element
            if (minHeap.size() > k) {
                minHeap.poll();
            }
        }
        
        // The root of the heap is the kth largest element
        return minHeap.peek();
    }
}

Solution in C#

C#
using System;
using System.Collections.Generic;

public class Solution {
    public int FindKthLargest(int[] nums, int k) {
        // Create a priority queue (min-heap) to store the top k largest elements
        PriorityQueue<int, int> minHeap = new PriorityQueue<int, int>();

        // Iterate over each element in the nums array
        foreach (int num in nums) {
            // Add the current number to the heap
            minHeap.Enqueue(num, num);
            
            // If the size of the heap exceeds k, remove the smallest element
            if (minHeap.Count > k) {
                minHeap.Dequeue();
            }
        }
        
        // The root of the heap is the kth largest element
        return minHeap.Peek();
    }
}

Subscribe
Notify of

0 Comments
Oldest
Newest Most Voted
Inline Feedbacks
View all comments

Popular