HomeLeetcode22. Generate Parentheses - Leetcode Solutions

22. Generate Parentheses – Leetcode Solutions

Description:

Given n pairs of parentheses, write a function to generate all combinations of well-formed parentheses.

Examples:

Example 1:

Input: n = 3
Output: ["((()))","(()())","(())()","()(())","()()()"]

Example 2:

Input: n = 1
Output: ["()"]

Solution in Python:

To generate all combinations of well-formed parentheses for a given number of pairs nnn, we can use a backtracking approach. The idea is to build the solution incrementally, by adding an open parenthesis ( if we still have one available, or a close parenthesis ) if it would not invalidate the sequence.

Detailed Steps:

  1. Initialize:
    • Create a function that initializes the backtracking process.
    • Initialize an empty list to store the valid combinations.
  2. Backtracking Function:
    • This function will take the current string, the number of open and close parentheses used so far.
    • If the current string length is 2×n (i.e., all parentheses are used), add the current string to the result list.
    • If the number of open parentheses used is less than nnn, add an open parenthesis and call the function recursively.
    • If the number of close parentheses used is less than the number of open parentheses used, add a close parenthesis and call the function recursively.
  3. Base Cases and Constraints:
    • Ensure that we do not add more than nnn open parentheses.
    • Ensure that we do not add more close parentheses than open parentheses.
Python
class Solution:
    def generateParenthesis(self, n: int) -> List[str]:
        def backtrack(current_string, open_count, close_count):
            # If the current string length is equal to 2 * n, it means we have used all parentheses
            if len(current_string) == 2 * n:
                result.append(current_string)
                return
            
            # If we can still add an open parenthesis, add it and recurse
            if open_count < n:
                backtrack(current_string + '(', open_count + 1, close_count)
            
            # If we can add a close parenthesis without invalidating the sequence, add it and recurse
            if close_count < open_count:
                backtrack(current_string + ')', open_count, close_count + 1)
        
        result = []
        backtrack('', 0, 0)  # Start with an empty string and no open or close parentheses used
        return result

Solution in Javascript:

JavaScript
/**
 * @param {number} n
 * @return {string[]}
 */
var generateParenthesis = function(n) {
    // Helper function for backtracking
    const backtrack = (currentString, openCount, closeCount) => {
        // If the current string length is equal to 2 * n, it means we have used all parentheses
        if (currentString.length === 2 * n) {
            result.push(currentString);
            return;
        }
        
        // If we can still add an open parenthesis, add it and recurse
        if (openCount < n) {
            backtrack(currentString + '(', openCount + 1, closeCount);
        }
        
        // If we can add a close parenthesis without invalidating the sequence, add it and recurse
        if (closeCount < openCount) {
            backtrack(currentString + ')', openCount, closeCount + 1);
        }
    };
    
    const result = [];  // Initialize an empty array to store the results
    backtrack('', 0, 0);  // Start the backtracking process with an empty string and no open or close parentheses used
    return result;  // Return the array of valid combinations
};

Solution in Java:

Java
import java.util.ArrayList;
import java.util.List;

class Solution {
    public List<String> generateParenthesis(int n) {
        List<String> result = new ArrayList<>();  // Initialize an empty list to store the results
        backtrack(result, "", 0, 0, n);  // Start the backtracking process
        return result;  // Return the list of valid combinations
    }
    
    // Helper function for backtracking
    private void backtrack(List<String> result, String currentString, int openCount, int closeCount, int max) {
        // If the current string length is equal to 2 * n, it means we have used all parentheses
        if (currentString.length() == max * 2) {
            result.add(currentString);  // Add the current valid combination to the result list
            return;
        }
        
        // If we can still add an open parenthesis, add it and recurse
        if (openCount < max) {
            backtrack(result, currentString + "(", openCount + 1, closeCount, max);
        }
        
        // If we can add a close parenthesis without invalidating the sequence, add it and recurse
        if (closeCount < openCount) {
            backtrack(result, currentString + ")", openCount, closeCount + 1, max);
        }
    }
}

Solution in C#:

C#
using System;
using System.Collections.Generic;

public class Solution {
    // Method to generate all combinations of well-formed parentheses
    public IList<string> GenerateParenthesis(int n) {
        List<string> result = new List<string>();  // List to store valid combinations
        Backtrack(result, "", 0, 0, n);  // Start the backtracking process
        return result;  // Return the list of valid combinations
    }
    
    // Helper method for backtracking
    private void Backtrack(List<string> result, string currentString, int openCount, int closeCount, int max) {
        // If the current string length is equal to 2 * n, it means we have used all parentheses
        if (currentString.Length == max * 2) {
            result.Add(currentString);  // Add the current valid combination to the result list
            return;
        }
        
        // If we can still add an open parenthesis, add it and recurse
        if (openCount < max) {
            Backtrack(result, currentString + "(", openCount + 1, closeCount, max);
        }
        
        // If we can add a close parenthesis without invalidating the sequence, add it and recurse
        if (closeCount < openCount) {
            Backtrack(result, currentString + ")", openCount, closeCount + 1, max);
        }
    }
}

Subscribe
Notify of

0 Comments
Oldest
Newest Most Voted
Inline Feedbacks
View all comments

Popular