HomeLeetcode48. Rotate Image - Leetcode Solutions

48. Rotate Image – Leetcode Solutions

Description:

You are given an n x n 2D matrix representing an image, rotate the image by 90 degrees (clockwise).

You have to rotate the image in-place, which means you have to modify the input 2D matrix directly. DO NOT allocate another 2D matrix and do the rotation.

Examples:

Example 1:
Input: matrix = [[1,2,3],[4,5,6],[7,8,9]]
Output: [[7,4,1],[8,5,2],[9,6,3]]

Example 2:
Input: matrix = [[5,1,9,11],[2,4,8,10],[13,3,6,7],[15,14,12,16]]
Output: [[15,13,2,5],[14,3,4,1],[12,6,8,9],[16,7,10,11]]

Solution in Python:

To solve the problem of rotating a 2D matrix by 90 degrees in-place, we can follow a two-step approach:

  1. Transpose the matrix.
  2. Reverse each row.
Python
class Solution:
    def rotate(self, matrix: List[List[int]]) -> None:
        """
        Rotate the matrix in-place by 90 degrees clockwise.
        """
        n = len(matrix)
        
        # Step 1: Transpose the matrix.
        # Transposing means converting rows to columns and vice versa.
        for i in range(n):
            for j in range(i, n):
                matrix[i][j], matrix[j][i] = matrix[j][i], matrix[i][j]
        
        # Step 2: Reverse each row.
        # Reversing each row of the transposed matrix gives us the desired rotation.
        for i in range(n):
            matrix[i].reverse()

Explanation:

  1. Transpose the Matrix:
    • Transposing involves swapping the element at position (i, j) with the element at position (j, i).
    • We iterate over the upper triangle of the matrix (including the diagonal) to perform the swaps, thus transforming rows into columns.
  2. Reverse Each Row:
    • After transposing, each row is reversed. This step effectively completes the 90-degree rotation.
    • Reversing each row can be done using the reverse() method in Python.

By following these two steps, the matrix is rotated 90 degrees in-place without using any additional space for another matrix. This approach ensures that the operation is performed efficiently with a time complexity of O(n^2).

Solution in Javascript:

JavaScript
/**
 * @param {number[][]} matrix
 * @return {void} Do not return anything, modify matrix in-place instead.
 */
var rotate = function(matrix) {
    const n = matrix.length;
    
    // Step 1: Transpose the matrix.
    // Transposing means converting rows to columns and vice versa.
    for (let i = 0; i < n; i++) {
        for (let j = i; j < n; j++) {
            // Swap element at (i, j) with element at (j, i)
            [matrix[i][j], matrix[j][i]] = [matrix[j][i], matrix[i][j]];
        }
    }
    
    // Step 2: Reverse each row.
    // Reversing each row of the transposed matrix gives us the desired rotation.
    for (let i = 0; i < n; i++) {
        matrix[i].reverse();
    }
};

Solution in Java:

Java
class Solution {
    public void rotate(int[][] matrix) {
        int n = matrix.length;
        
        // Step 1: Transpose the matrix.
        // Transposing means converting rows to columns and vice versa.
        for (int i = 0; i < n; i++) {
            for (int j = i; j < n; j++) {
                // Swap element at (i, j) with element at (j, i)
                int temp = matrix[i][j];
                matrix[i][j] = matrix[j][i];
                matrix[j][i] = temp;
            }
        }
        
        // Step 2: Reverse each row.
        // Reversing each row of the transposed matrix gives us the desired rotation.
        for (int i = 0; i < n; i++) {
            int left = 0, right = n - 1;
            while (left < right) {
                // Swap elements at (i, left) and (i, right)
                int temp = matrix[i][left];
                matrix[i][left] = matrix[i][right];
                matrix[i][right] = temp;
                left++;
                right--;
            }
        }
    }

}

Solution in C#:

C#
public class Solution {
    public void Rotate(int[][] matrix) {
        int n = matrix.Length;
        
        // Step 1: Transpose the matrix.
        // Transposing means converting rows to columns and vice versa.
        for (int i = 0; i < n; i++) {
            for (int j = i; j < n; j++) {
                // Swap element at (i, j) with element at (j, i)
                int temp = matrix[i][j];
                matrix[i][j] = matrix[j][i];
                matrix[j][i] = temp;
            }
        }
        
        // Step 2: Reverse each row.
        // Reversing each row of the transposed matrix gives us the desired rotation.
        for (int i = 0; i < n; i++) {
            Array.Reverse(matrix[i]);
        }
    }

   
}

Subscribe
Notify of

0 Comments
Oldest
Newest Most Voted
Inline Feedbacks
View all comments

Popular