HomeLeetcode50. Pow(x, n) - Leetcode Solutions

50. Pow(x, n) – Leetcode Solutions

Description:

Implement pow(x, n), which calculates x raised to the power n (i.e., xn).

Examples:

Example 1:

Input: x = 2.00000, n = 10
Output: 1024.00000

Example 2:

Input: x = 2.10000, n = 3
Output: 9.26100

Example 3:

Input: x = 2.00000, n = -2
Output: 0.25000
Explanation: 2-2 = 1/22 = 1/4 = 0.25

Solution in Python:

To implement the pow(x, n) function, which calculates x raised to the power nnn (i.e., xn), we can use a method called Exponentiation by Squaring. This method is efficient and works in O(log ⁡n) time complexity.

Python
class Solution:
    def myPow(self, x: float, n: int) -> float:
        # Helper function to compute power with positive exponent
        def power(x: float, n: int) -> float:
            if n == 0:
                return 1.0  # Base case: x^0 is always 1
            half = power(x, n // 2)
            if n % 2 == 0:
                return half * half  # If n is even, x^n = (x^(n/2))^2
            else:
                return half * half * x  # If n is odd, x^n = (x^(n//2))^2 * x
        
        # If n is negative, compute the positive power and take the reciprocal
        if n < 0:
            x = 1 / x
            n = -n
        
        return power(x, n)

Detailed Explanation:

  1. Helper Function:
    • We define a helper function power that computes x raised to the power n for non-negative integers.
    • Base Case: If n is 0, return 1. This is because any number raised to the power of 0 is 1.
    • Recursive Case:
      • Compute the power for half of n using power(x, n // 2).
      • If n is even, then xn=(xn/2)2
      • If n is odd, then xn=(xn//2)2×x.
  2. Handling Negative Exponent:
    • If n is negative, convert the problem to computing the positive power and take the reciprocal of the result. This is done by:
      • Setting x to 1/x
      • Making n positive by setting n to −n
  3. Computing the Result:
    • Call the power function with the modified xxx and nnn to get the result.

This method ensures that we efficiently compute the power of a number using a logarithmic number of multiplications. It is both time-efficient and easy to understand.

Solution in Javascript:

JavaScript
/**
 * @param {number} x
 * @param {number} n
 * @return {number}
 */
var myPow = function(x, n) {
    // Helper function to compute power with positive exponent
    const power = (x, n) => {
        if (n === 0) {
            return 1.0; // Base case: x^0 is always 1
        }
        let half = power(x, Math.floor(n / 2));
        if (n % 2 === 0) {
            return half * half; // If n is even, x^n = (x^(n/2))^2
        } else {
            return half * half * x; // If n is odd, x^n = (x^(n//2))^2 * x
        }
    };

    // If n is negative, compute the positive power and take the reciprocal
    if (n < 0) {
        x = 1 / x;
        n = -n;
    }

    return power(x, n);
};

Solution in Java:

Java
class Solution {
    public double myPow(double x, int n) {
        // Handle negative exponents by converting n to a positive and taking reciprocal of x
        long N = n; // Use long to handle the case when n is Integer.MIN_VALUE
        if (N < 0) {
            x = 1 / x;
            N = -N;
        }
        
        // Compute the result using the helper function
        return power(x, N);
    }

    // Helper function to compute power with positive exponent
    private double power(double x, long n) {
        if (n == 0) {
            return 1.0; // Base case: x^0 is always 1
        }
        double half = power(x, n / 2);
        if (n % 2 == 0) {
            return half * half; // If n is even, x^n = (x^(n/2))^2
        } else {
            return half * half * x; // If n is odd, x^n = (x^(n/2))^2 * x
        }
    }
}

Solution in C#:

C#
public class Solution {
    public double MyPow(double x, int n) {
        // Handle negative exponents by converting n to a positive and taking reciprocal of x
        long N = n; // Use long to handle the case when n is Int32.MinValue
        if (N < 0) {
            x = 1 / x;
            N = -N;
        }
        
        // Compute the result using the helper function
        return Power(x, N);
    }

    // Helper function to compute power with positive exponent
    private double Power(double x, long n) {
        if (n == 0) {
            return 1.0; // Base case: x^0 is always 1
        }
        double half = Power(x, n / 2);
        if (n % 2 == 0) {
            return half * half; // If n is even, x^n = (x^(n/2))^2
        } else {
            return half * half * x; // If n is odd, x^n = (x^(n/2))^2 * x
        }
    }
}

Subscribe
Notify of

0 Comments
Oldest
Newest Most Voted
Inline Feedbacks
View all comments

Popular