HomeLeetcode53. Maximum Subarray - Leetcode Solutions

53. Maximum Subarray – Leetcode Solutions

Description:

Given an integer array nums, find the subarray with the largest sum, and return its sum.

Examples:

Example 1:

Input: nums = [-2,1,-3,4,-1,2,1,-5,4]
Output: 6
Explanation: The subarray [4,-1,2,1] has the largest sum 6.

Example 2:

Input: nums = [1]
Output: 1
Explanation: The subarray [1] has the largest sum 1.

Example 3:

Input: nums = [5,4,-1,7,8]
Output: 23
Explanation: The subarray [5,4,-1,7,8] has the largest sum 23.

Solution in Python:

To solve the problem of finding the subarray with the largest sum, we can use Kadane’s Algorithm. This algorithm efficiently finds the maximum sum of a contiguous subarray in O(n) time.

Python
from typing import List

class Solution:
    def maxSubArray(self, nums: List[int]) -> int:
        # Initialize the variables to store the maximum sum found so far and the current sum
        max_sum = float('-inf')
        current_sum = 0
        
        # Iterate over each number in the array
        for num in nums:
            # Update the current sum by including the current number
            current_sum += num
            
            # Update the maximum sum found so far if the current sum is greater
            if current_sum > max_sum:
                max_sum = current_sum
            
            # If the current sum drops below zero, reset it to zero
            if current_sum < 0:
                current_sum = 0
        
        return max_sum

Explanation:

  1. Initialization:
    • max_sum is initialized to negative infinity (float('-inf')) to ensure that any sum we encounter will be larger.
    • current_sum is initialized to 0 to start calculating the sum of subarrays from the beginning.
  2. Iterating Through the Array:
    • For each number in the array (for num in nums), we add the number to current_sum.
    • If current_sum exceeds max_sum, we update max_sum to be current_sum.
  3. Resetting the Current Sum:
    • If current_sum drops below 0, it means that the current subarray cannot contribute positively to any future subarray sum, so we reset current_sum to 0.
  4. Returning the Result:
    • After iterating through the array, max_sum will hold the maximum sum of any contiguous subarray, which we return.

Kadane’s Algorithm:

  • Time Complexity: O(n), where n is the length of the input array. This is because we only pass through the array once.
  • Space Complexity: O(1), as we use a constant amount of extra space regardless of the input size.

This solution effectively finds the maximum subarray sum in a single pass through the array, making it optimal for large input sizes as specified in the problem constraints.

Solution in Javascript:

JavaScript
/**
 * @param {number[]} nums
 * @return {number}
 */
var maxSubArray = function(nums) {
    // Initialize variables to store the maximum sum found so far and the current sum
    let maxSum = Number.NEGATIVE_INFINITY;
    let currentSum = 0;

    // Iterate through each number in the array
    for (let num of nums) {
        // Update the current sum by including the current number
        currentSum += num;

        // Update the maximum sum found so far if the current sum is greater
        if (currentSum > maxSum) {
            maxSum = currentSum;
        }

        // If the current sum drops below zero, reset it to zero
        if (currentSum < 0) {
            currentSum = 0;
        }
    }

    return maxSum;
};

Solution in Java:

Java
class Solution {
    public int maxSubArray(int[] nums) {
        // Initialize variables to store the maximum sum found so far and the current sum
        int maxSum = Integer.MIN_VALUE;
        int currentSum = 0;

        // Iterate through each number in the array
        for (int num : nums) {
            // Update the current sum by including the current number
            currentSum += num;

            // Update the maximum sum found so far if the current sum is greater
            maxSum = Math.max(maxSum, currentSum);

            // If the current sum drops below zero, reset it to zero
            if (currentSum < 0) {
                currentSum = 0;
            }
        }

        return maxSum;
    }
}

Solution in C#:

C#
public class Solution {
    public int MaxSubArray(int[] nums) {
        // Initialize variables to store the maximum sum found so far and the current sum
        int maxSum = int.MinValue;
        int currentSum = 0;

        // Iterate through each number in the array
        foreach (int num in nums) {
            // Update the current sum by including the current number
            currentSum += num;

            // Update the maximum sum found so far if the current sum is greater
            maxSum = Math.Max(maxSum, currentSum);

            // If the current sum drops below zero, reset it to zero
            if (currentSum < 0) {
                currentSum = 0;
            }
        }

        return maxSum;
    }
}

Subscribe
Notify of

0 Comments
Oldest
Newest Most Voted
Inline Feedbacks
View all comments

Popular