HomeLeetcode64. Minimum Path Sum - Leetcode Solutions

64. Minimum Path Sum – Leetcode Solutions

Description:

Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right, which minimizes the sum of all numbers along its path.

Note: You can only move either down or right at any point in time.

Examples:

Example 1:

Input: grid = [[1,3,1],[1,5,1],[4,2,1]]
Output: 7
Explanation: Because the path 1 → 3 → 1 → 1 → 1 minimizes the sum.

Example 2:

Input: grid = [[1,2,3],[4,5,6]]
Output: 12

Solution in Python:

To solve the problem of finding a path from the top-left corner to the bottom-right corner of a grid that minimizes the sum of all numbers along its path, we will use a dynamic programming approach.

Steps to Solve the Problem:

  1. Define the Problem in Terms of Subproblems:
    • We need to calculate the minimum path sum to reach each cell (i, j) starting from the top-left corner (0, 0).
    • The minimum path sum to reach cell (i, j) can be derived from the minimum path sum to reach either cell (i-1, j) (the cell above) or cell (i, j-1) (the cell to the left).
  2. Initialize the Base Cases:
    • The minimum path sum to reach the starting cell (0, 0) is the value of the cell itself.
    • For the first row and the first column, the minimum path sum is the cumulative sum of the cells along that row or column.
  3. Create and Populate the DP Table:
    • Create a 2D array dp where dp[i][j] represents the minimum path sum to reach cell (i, j).
    • Iterate through the grid, and for each cell (i, j), update dp[i][j] based on the values from the cell above it and the cell to the left of it.
  4. Return the Result:
    • The value at dp[m-1][n-1] will give us the minimum path sum to the bottom-right corner of the grid.
Python
from typing import List

class Solution:
    def minPathSum(self, grid: List[List[int]]) -> int:
        # Get the dimensions of the grid
        m, n = len(grid), len(grid[0])

        # Create a 2D dp array initialized to 0
        dp = [[0] * n for _ in range(m)]

        # Initialize the starting point
        dp[0][0] = grid[0][0]

        # Fill the first row
        for j in range(1, n):
            dp[0][j] = dp[0][j-1] + grid[0][j]

        # Fill the first column
        for i in range(1, m):
            dp[i][0] = dp[i-1][0] + grid[i][0]

        # Fill the dp table
        for i in range(1, m):
            for j in range(1, n):
                dp[i][j] = min(dp[i-1][j], dp[i][j-1]) + grid[i][j]

        # Return the minimum path sum to reach the bottom-right corner
        return dp[m-1][n-1]

Detailed Explanation:

  1. Initialization:
    • m, n = len(grid), len(grid[0]) gets the dimensions of the grid.
    • dp = [[0] * n for _ in range(m)] creates an m x n grid initialized to 0.
  2. Setting Up the Starting Point:
    • dp[0][0] = grid[0][0] initializes the starting point with the value of the top-left cell.
  3. Filling the First Row and Column:
    • The loop for j in range(1, n): dp[0][j] = dp[0][j-1] + grid[0][j] fills the first row by accumulating the values of the cells from the left.
    • The loop for i in range(1, m): dp[i][0] = dp[i-1][0] + grid[i][0] fills the first column by accumulating the values of the cells from above.
  4. Filling the DP Table:
    • The nested loop for i in range(1, m): for j in range(1, n): dp[i][j] = min(dp[i-1][j], dp[i][j-1]) + grid[i][j] computes the minimum path sum to each cell (i, j) by taking the minimum of the sums from the cell above and the cell to the left and adding the value of the current cell.
  5. Result:
    • return dp[m-1][n-1] returns the value at the bottom-right corner of the grid, which represents the minimum path sum to that cell.

This approach ensures that we efficiently compute the minimum path sum using dynamic programming in O(m * n) time complexity, which is suitable given the problem constraints.

Solution in Javascript:

JavaScript
/**
 * @param {number[][]} grid
 * @return {number}
 */
var minPathSum = function(grid) {
    // Get the dimensions of the grid
    const m = grid.length;
    const n = grid[0].length;

    // Create a 2D dp array initialized to 0
    const dp = Array.from({ length: m }, () => Array(n).fill(0));

    // Initialize the starting point
    dp[0][0] = grid[0][0];

    // Fill the first row
    for (let j = 1; j < n; j++) {
        dp[0][j] = dp[0][j-1] + grid[0][j];
    }

    // Fill the first column
    for (let i = 1; i < m; i++) {
        dp[i][0] = dp[i-1][0] + grid[i][0];
    }

    // Fill the dp table
    for (let i = 1; i < m; i++) {
        for (let j = 1; j < n; j++) {
            dp[i][j] = Math.min(dp[i-1][j], dp[i][j-1]) + grid[i][j];
        }
    }

    // Return the minimum path sum to reach the bottom-right corner
    return dp[m-1][n-1];
};

Solution in Java:

Java
class Solution {
    public int minPathSum(int[][] grid) {
        // Get the dimensions of the grid
        int m = grid.length;
        int n = grid[0].length;

        // Create a 2D dp array initialized to 0
        int[][] dp = new int[m][n];

        // Initialize the starting point
        dp[0][0] = grid[0][0];

        // Fill the first row
        for (int j = 1; j < n; j++) {
            dp[0][j] = dp[0][j - 1] + grid[0][j];
        }

        // Fill the first column
        for (int i = 1; i < m; i++) {
            dp[i][0] = dp[i - 1][0] + grid[i][0];
        }

        // Fill the dp table
        for (int i = 1; i < m; i++) {
            for (int j = 1; j < n; j++) {
                dp[i][j] = Math.min(dp[i - 1][j], dp[i][j - 1]) + grid[i][j];
            }
        }

        // Return the minimum path sum to reach the bottom-right corner
        return dp[m - 1][n - 1];
    }
}

Solution in C#:

C#
public class Solution {
    public int MinPathSum(int[][] grid) {
        // Get the dimensions of the grid
        int m = grid.Length;
        int n = grid[0].Length;

        // Create a 2D dp array initialized to 0
        int[,] dp = new int[m, n];

        // Initialize the starting point
        dp[0, 0] = grid[0][0];

        // Fill the first row
        for (int j = 1; j < n; j++) {
            dp[0, j] = dp[0, j - 1] + grid[0][j];
        }

        // Fill the first column
        for (int i = 1; i < m; i++) {
            dp[i, 0] = dp[i - 1, 0] + grid[i][0];
        }

        // Fill the dp table
        for (int i = 1; i < m; i++) {
            for (int j = 1; j < n; j++) {
                dp[i, j] = Math.Min(dp[i - 1, j], dp[i, j - 1]) + grid[i][j];
            }
        }

        // Return the minimum path sum to reach the bottom-right corner
        return dp[m - 1, n - 1];
    }
}

Subscribe
Notify of

0 Comments
Oldest
Newest Most Voted
Inline Feedbacks
View all comments

Popular