HomeLeetcode72. Edit Distance - Leetcode Solutions

72. Edit Distance – Leetcode Solutions

Description:

Given two strings word1 and word2, return the minimum number of operations required to convert word1 to word2.

You have the following three operations permitted on a word:

  • Insert a character
  • Delete a character
  • Replace a character

Examples:

Example 1:

Input: word1 = "horse", word2 = "ros"
Output: 3
Explanation: 
horse -> rorse (replace 'h' with 'r')
rorse -> rose (remove 'r')
rose -> ros (remove 'e')

Example 2:

Input: word1 = "intention", word2 = "execution"
Output: 5
Explanation: 
intention -> inention (remove 't')
inention -> enention (replace 'i' with 'e')
enention -> exention (replace 'n' with 'x')
exention -> exection (replace 'n' with 'c')
exection -> execution (insert 'u')

Solution in Python:

To solve the Edit Distance problem, we need to determine the minimum number of operations required to convert one string (word1) into another string (word2). The operations allowed are insertion, deletion, and replacement of characters.

We will use dynamic programming to solve this problem. We will create a 2D table where dp[i][j] represents the minimum number of operations required to convert the first i characters of word1 into the first j characters of word2.

  1. Initialize the DP table: Create a table dp with dimensions (len(word1) + 1) x (len(word2) + 1). dp[i][j] will hold the edit distance between the first i characters of word1 and the first j characters of word2.
  2. Base Cases:
    • If word1 is empty, the only option is to insert all characters of word2. So, dp[0][j] = j.
    • If word2 is empty, the only option is to delete all characters of word1. So, dp[i][0] = i.
  3. Fill the DP table:
    • If the characters of word1 and word2 match (word1[i-1] == word2[j-1]), then no new operation is needed, and we can take the value from dp[i-1][j-1].
    • If the characters do not match, we consider the minimum of three possible operations:
      • Insert a character: dp[i][j-1] + 1
      • Delete a character: dp[i-1][j] + 1
      • Replace a character: dp[i-1][j-1] + 1
  4. Result: The value in dp[len(word1)][len(word2)] will be our answer, i.e., the minimum number of operations required to convert word1 to word2.
Python
class Solution:
    def minDistance(self, word1: str, word2: str) -> int:
        m, n = len(word1), len(word2)
        
        # Initialize the DP table with zeroes
        dp = [[0] * (n + 1) for _ in range(m + 1)]
        
        # Fill the base cases
        for i in range(1, m + 1):
            dp[i][0] = i
        for j in range(1, n + 1):
            dp[0][j] = j
        
        # Fill the rest of the DP table
        for i in range(1, m + 1):
            for j in range(1, n + 1):
                if word1[i - 1] == word2[j - 1]:
                    dp[i][j] = dp[i - 1][j - 1]
                else:
                    dp[i][j] = min(dp[i - 1][j] + 1,    # Delete
                                   dp[i][j - 1] + 1,    # Insert
                                   dp[i - 1][j - 1] + 1)  # Replace
        
        # The answer is in the bottom-right corner of the DP table
        return dp[m][n]

Detailed Comments:

  • Initialization: dp = [[0] * (n + 1) for _ in range(m + 1)] initializes a 2D list with dimensions (m+1) x (n+1) filled with zeros.
  • Base Cases:
    • for i in range(1, m + 1): dp[i][0] = i fills the first column, representing the cost of deleting characters from word1.
    • for j in range(1, n + 1): dp[0][j] = j fills the first row, representing the cost of inserting characters from word2.
  • DP Table Filling:
    • The nested loops iterate through each character of word1 and word2.
    • if word1[i - 1] == word2[j - 1]: dp[i][j] = dp[i - 1][j - 1] checks if the characters are the same; if so, it takes the diagonal value.
    • else: dp[i][j] = min(...) computes the minimum of insert, delete, and replace operations.
  • Result: return dp[m][n] gives the minimum edit distance.

This solution ensures that all possible operations are considered to find the minimum number of changes required.

Solution in Javascript:

JavaScript
/**
 * @param {string} word1
 * @param {string} word2
 * @return {number}
 */
var minDistance = function(word1, word2) {
    let m = word1.length;
    let n = word2.length;
    
    // Initialize the DP table with dimensions (m+1) x (n+1)
    let dp = Array.from({ length: m + 1 }, () => Array(n + 1).fill(0));
    
    // Fill the base cases
    for (let i = 1; i <= m; i++) {
        dp[i][0] = i;  // Cost of deleting all characters from word1 to match an empty word2
    }
    
    for (let j = 1; j <= n; j++) {
        dp[0][j] = j;  // Cost of inserting all characters of word2 to match an empty word1
    }
    
    // Fill the DP table
    for (let i = 1; i <= m; i++) {
        for (let j = 1; j <= n; j++) {
            if (word1.charAt(i - 1) === word2.charAt(j - 1)) {
                // Characters match, no additional cost
                dp[i][j] = dp[i - 1][j - 1];
            } else {
                // Calculate the minimum cost of insert, delete, or replace
                dp[i][j] = Math.min(
                    dp[i - 1][j] + 1,   // Delete
                    dp[i][j - 1] + 1,   // Insert
                    dp[i - 1][j - 1] + 1 // Replace
                );
            }
        }
    }
    
    // The answer is in the bottom-right corner of the DP table
    return dp[m][n];
};

Solution in Java:

Java
class Solution {
    public int minDistance(String word1, String word2) {
        int m = word1.length();
        int n = word2.length();
        
        // Initialize the DP table with dimensions (m+1) x (n+1)
        int[][] dp = new int[m + 1][n + 1];
        
        // Fill the base cases
        for (int i = 1; i <= m; i++) {
            dp[i][0] = i;  // Cost of deleting all characters from word1 to match an empty word2
        }
        
        for (int j = 1; j <= n; j++) {
            dp[0][j] = j;  // Cost of inserting all characters of word2 to match an empty word1
        }
        
        // Fill the DP table
        for (int i = 1; i <= m; i++) {
            for (int j = 1; j <= n; j++) {
                if (word1.charAt(i - 1) == word2.charAt(j - 1)) {
                    // Characters match, no additional cost
                    dp[i][j] = dp[i - 1][j - 1];
                } else {
                    // Calculate the minimum cost of insert, delete, or replace
                    dp[i][j] = Math.min(
                        dp[i - 1][j] + 1,   // Delete
                        Math.min(
                            dp[i][j - 1] + 1,   // Insert
                            dp[i - 1][j - 1] + 1 // Replace
                        )
                    );
                }
            }
        }
        
        // The answer is in the bottom-right corner of the DP table
        return dp[m][n];
    }
}

Solution in C#:

C#
public class Solution {
    public int MinDistance(string word1, string word2) {
        int m = word1.Length;
        int n = word2.Length;
        
        // Initialize the DP table with dimensions (m+1) x (n+1)
        int[,] dp = new int[m + 1, n + 1];
        
        // Fill the base cases
        for (int i = 1; i <= m; i++) {
            dp[i, 0] = i;  // Cost of deleting all characters from word1 to match an empty word2
        }
        
        for (int j = 1; j <= n; j++) {
            dp[0, j] = j;  // Cost of inserting all characters of word2 to match an empty word1
        }
        
        // Fill the DP table
        for (int i = 1; i <= m; i++) {
            for (int j = 1; j <= n; j++) {
                if (word1[i - 1] == word2[j - 1]) {
                    // Characters match, no additional cost
                    dp[i, j] = dp[i - 1, j - 1];
                } else {
                    // Calculate the minimum cost of insert, delete, or replace
                    dp[i, j] = Math.Min(
                        dp[i - 1, j] + 1,   // Delete
                        Math.Min(
                            dp[i, j - 1] + 1,   // Insert
                            dp[i - 1, j - 1] + 1 // Replace
                        )
                    );
                }
            }
        }
        
        // The answer is in the bottom-right corner of the DP table
        return dp[m, n];
    }
}

Subscribe
Notify of

0 Comments
Oldest
Newest Most Voted
Inline Feedbacks
View all comments

Popular