HomeLeetcode74. Search a 2D Matrix - Leetcode Solutions

74. Search a 2D Matrix – Leetcode Solutions

Description:

You are given an m x n integer matrix matrix with the following two properties:

  • Each row is sorted in non-decreasing order.
  • The first integer of each row is greater than the last integer of the previous row.

Given an integer target, return true if target is in matrix or false otherwise.

You must write a solution in O(log(m * n)) time complexity.

Examples:

Example 1:
Input: matrix = [[1,3,5,7],[10,11,16,20],[23,30,34,60]], target = 3
Output: true

Example 2:
Input: matrix = [[1,3,5,7],[10,11,16,20],[23,30,34,60]], target = 13
Output: false
 

Solution in Python:

Python
from typing import List

class Solution:
    def searchMatrix(self, matrix: List[List[int]], target: int) -> bool:
        # Get the number of rows (m) and columns (n)
        m = len(matrix)
        n = len(matrix[0])
        
        # Initialize left and right pointers for binary search
        left = 0
        right = m * n - 1
        
        while left <= right:
            # Calculate the middle index
            mid = (left + right) // 2
            
            # Convert the middle index to row and column indices in the 2D matrix
            mid_value = matrix[mid // n][mid % n]
            
            if mid_value == target:
                # If the middle value is the target, return True
                return True
            elif mid_value < target:
                # If the middle value is less than the target, move the left pointer to the right of mid
                left = mid + 1
            else:
                # If the middle value is greater than the target, move the right pointer to the left of mid
                right = mid - 1
        
        # If the target is not found, return False
        return False

Detailed Comments:

  1. Matrix Dimensions:
    • m = len(matrix): Number of rows in the matrix.
    • n = len(matrix[0]): Number of columns in the matrix.
  2. Binary Search Initialization:
    • left = 0: The starting index of the binary search, corresponding to the first element of the matrix.
    • right = m * n - 1: The ending index of the binary search, corresponding to the last element of the matrix.
  3. Binary Search Loop:
    • The loop continues as long as left <= right, ensuring we still have elements to consider.
  4. Calculate Middle Index:
    • mid = (left + right) // 2: Compute the middle index.
  5. Convert Middle Index to Matrix Indices:
    • mid_value = matrix[mid // n][mid % n]: Convert the 1D mid index to 2D row and column indices:
      • mid // n gives the row index.
      • mid % n gives the column index.
  6. Comparison and Adjustment of Pointers:
    • If mid_value == target, the target is found, so return True.
    • If mid_value < target, adjust the left pointer to search the right half (left = mid + 1).
    • If mid_value > target, adjust the right pointer to search the left half (right = mid - 1).
  7. Return False:
    • If the loop completes without finding the target, return False.

This approach leverages binary search on a conceptual 1D array representation of the 2D matrix, maintaining the required O(log(m * n)) time complexity.

Solution in Javascript:

JavaScript
/**
 * @param {number[][]} matrix
 * @param {number} target
 * @return {boolean}
 */
var searchMatrix = function(matrix, target) {
    // Get the number of rows (m) and columns (n)
    const m = matrix.length;
    const n = matrix[0].length;
    
    // Initialize left and right pointers for binary search
    let left = 0;
    let right = m * n - 1;
    
    while (left <= right) {
        // Calculate the middle index
        const mid = Math.floor((left + right) / 2);
        
        // Convert the middle index to row and column indices in the 2D matrix
        const midValue = matrix[Math.floor(mid / n)][mid % n];
        
        if (midValue === target) {
            // If the middle value is the target, return true
            return true;
        } else if (midValue < target) {
            // If the middle value is less than the target, move the left pointer to the right of mid
            left = mid + 1;
        } else {
            // If the middle value is greater than the target, move the right pointer to the left of mid
            right = mid - 1;
        }
    }
    
    // If the target is not found, return false
    return false;
};

Solution in Java:

Java
class Solution {
    public boolean searchMatrix(int[][] matrix, int target) {
        // Get the number of rows (m) and columns (n)
        int m = matrix.length;
        int n = matrix[0].length;
        
        // Initialize left and right pointers for binary search
        int left = 0;
        int right = m * n - 1;
        
        while (left <= right) {
            // Calculate the middle index
            int mid = (left + right) / 2;
            
            // Convert the middle index to row and column indices in the 2D matrix
            int midValue = matrix[mid / n][mid % n];
            
            if (midValue == target) {
                // If the middle value is the target, return true
                return true;
            } else if (midValue < target) {
                // If the middle value is less than the target, move the left pointer to the right of mid
                left = mid + 1;
            } else {
                // If the middle value is greater than the target, move the right pointer to the left of mid
                right = mid - 1;
            }
        }
        
        // If the target is not found, return false
        return false;
    }
}

Solution in C#:

C#
public class Solution {
    public bool SearchMatrix(int[][] matrix, int target) {
        // Get the number of rows (m) and columns (n)
        int m = matrix.Length;
        int n = matrix[0].Length;
        
        // Initialize left and right pointers for binary search
        int left = 0;
        int right = m * n - 1;
        
        while (left <= right) {
            // Calculate the middle index
            int mid = (left + right) / 2;
            
            // Convert the middle index to row and column indices in the 2D matrix
            int midValue = matrix[mid / n][mid % n];
            
            if (midValue == target) {
                // If the middle value is the target, return true
                return true;
            } else if (midValue < target) {
                // If the middle value is less than the target, move the left pointer to the right of mid
                left = mid + 1;
            } else {
                // If the middle value is greater than the target, move the right pointer to the left of mid
                right = mid - 1;
            }
        }
        
        // If the target is not found, return false
        return false;
    }
}
Subscribe
Notify of

0 Comments
Oldest
Newest Most Voted
Inline Feedbacks
View all comments

Popular