HomeLeetcode77. Combinations - Leetcode Solutions

77. Combinations – Leetcode Solutions

Description:

Given two integers n and k, return all possible combinations of k numbers chosen from the range [1, n].

You may return the answer in any order.

Examples:

Example 1:

Input: n = 4, k = 2
Output: [[1,2],[1,3],[1,4],[2,3],[2,4],[3,4]]
Explanation: There are 4 choose 2 = 6 total combinations.
Note that combinations are unordered, i.e., [1,2] and [2,1] are considered to be the same combination.

Example 2:

Input: n = 1, k = 1
Output: [[1]]
Explanation: There is 1 choose 1 = 1 total combination.

Solution in Python:

To solve the problem of generating all possible combinations of k numbers chosen from the range [1, n], we can use backtracking. Backtracking is an algorithmic technique for solving recursive problems by trying to build a solution incrementally, removing those solutions that fail to satisfy the constraints at any point in time.

Approach:

  1. Initialize Variables:
    • A list res to store the final combinations.
    • A temporary list comb to store the current combination.
  2. Backtracking Function:
    • This function will recursively build the combinations.
    • If the current combination comb has k elements, add it to res.
    • Otherwise, iterate through the range starting from the current number to n and try to include the current number in the combination.
    • After including a number, recursively call the backtracking function with the next number.
    • Remove the last number to backtrack and try the next possibility.
  3. Base and Recursive Case:
    • Base case: If the combination length equals k, add it to the result.
    • Recursive case: Iterate through the range and build the combination.
Python
from typing import List

class Solution:
    def combine(self, n: int, k: int) -> List[List[int]]:
        def backtrack(start, comb):
            # If the combination is done
            if len(comb) == k:
                res.append(comb[:])
                return
            
            # Iterate over the range
            for i in range(start, n + 1):
                # Add i into the current combination
                comb.append(i)
                # Use next integers to complete the combination
                backtrack(i + 1, comb)
                # Backtrack by removing the last element
                comb.pop()
        
        res = []
        backtrack(1, [])
        return res

Explanation:

  1. Function combine:
    • This is the main function that initializes the result list res and starts the backtracking process.
  2. Function backtrack:
    • Parameters:
      • start: The current starting number for the combination.
      • comb: The current combination being built.
    • If the length of comb equals k, it means we have a valid combination, so we append a copy of it to res.
    • Iterate from start to n. For each number i:
      • Add i to the current combination comb.
      • Call backtrack recursively with i + 1 as the new start to continue building the combination.
      • After returning from the recursive call, remove i from comb to backtrack.
  3. Base Case:
    • When len(comb) == k, a valid combination is found and added to res.
  4. Recursive Case:
    • Loop through numbers from start to n, add each number to the current combination, recursively call backtrack, and then backtrack by removing the number.

This algorithm ensures all combinations are generated and is efficient for the given constraints (1 <= n <= 20).

Solution in Javascript:

JavaScript
/**
 * @param {number} n
 * @param {number} k
 * @return {number[][]}
 */
var combine = function(n, k) {
    // Initialize the result array to store all combinations
    let res = [];
    
    // Backtracking helper function
    function backtrack(start, comb) {
        // If the combination is done (i.e., length of comb is k)
        if (comb.length === k) {
            // Make a copy of comb and add it to the result
            res.push([...comb]);
            return;
        }
        
        // Iterate over the range from start to n
        for (let i = start; i <= n; i++) {
            // Add i into the current combination
            comb.push(i);
            // Use next integers to complete the combination
            backtrack(i + 1, comb);
            // Backtrack by removing the last element
            comb.pop();
        }
    }
    
    // Start the backtracking with 1 and an empty combination
    backtrack(1, []);
    
    // Return the result containing all combinations
    return res;
};

Solution in Java:

Java
import java.util.ArrayList;
import java.util.List;

class Solution {
    public List<List<Integer>> combine(int n, int k) {
        List<List<Integer>> res = new ArrayList<>();
        backtrack(1, n, k, new ArrayList<>(), res);
        return res;
    }
    
    private void backtrack(int start, int n, int k, List<Integer> comb, List<List<Integer>> res) {
        // If the combination is done
        if (comb.size() == k) {
            // Make a copy of comb and add it to the result
            res.add(new ArrayList<>(comb));
            return;
        }
        
        // Iterate over the range from start to n
        for (int i = start; i <= n; i++) {
            // Add i into the current combination
            comb.add(i);
            // Use next integers to complete the combination
            backtrack(i + 1, n, k, comb, res);
            // Backtrack by removing the last element
            comb.remove(comb.size() - 1);
        }
    }
}

Solution in C#:

C#
using System.Collections.Generic;

public class Solution {
    public IList<IList<int>> Combine(int n, int k) {
        IList<IList<int>> res = new List<IList<int>>();
        Backtrack(1, n, k, new List<int>(), res);
        return res;
    }
    
    private void Backtrack(int start, int n, int k, List<int> comb, IList<IList<int>> res) {
        // If the combination is done
        if (comb.Count == k) {
            // Make a copy of comb and add it to the result
            res.Add(new List<int>(comb));
            return;
        }
        
        // Iterate over the range from start to n
        for (int i = start; i <= n; i++) {
            // Add i into the current combination
            comb.Add(i);
            // Use next integers to complete the combination
            Backtrack(i + 1, n, k, comb, res);
            // Backtrack by removing the last element
            comb.RemoveAt(comb.Count - 1);
        }
    }
}

Subscribe
Notify of

0 Comments
Oldest
Newest Most Voted
Inline Feedbacks
View all comments

Popular