HomeLeetcodePascal's Triangle (Task 118 Array) - Solutions

Pascal’s Triangle (Task 118 Array) – Solutions

Description:

Given an integer numRows, return the first numRows of Pascal’s triangle.

In Pascal’s triangle, each number is the sum of the two numbers directly above it as shown:

Examples:

Example 1:

Input: numRows = 5
Output: [[1],[1,1],[1,2,1],[1,3,3,1],[1,4,6,4,1]]

Example 2:

Input: numRows = 1
Output: [[1]]

Solution in Python:

To generate the first numRows of Pascal’s triangle in Python, we can follow a simple iterative approach. Pascal’s triangle is a triangular array of integers where the number at the position (i, j) is the sum of the numbers directly above it in the previous row (i-1, j-1) and (i-1, j).

Here is the detailed step-by-step solution:

  1. Initialization: Create an empty list to hold the rows of Pascal’s triangle.
  2. First Row: Add the first row, which is always [1].
  3. Iterate to Build Each Row:
    • For each subsequent row, start and end with 1.
    • Each element in the middle is the sum of the two elements directly above it from the previous row.
  4. Return the List of Rows: After building the required number of rows, return the list.
Python
from typing import List

class Solution:
    def generate(self, numRows: int) -> List[List[int]]:
        # Initialize the list to hold the rows of Pascal's triangle
        triangle = []
        
        # Build each row
        for row_num in range(numRows):
            # Start with a row filled with 1s
            row = [1] * (row_num + 1)
            
            # Compute the values for the middle elements
            for j in range(1, row_num):
                row[j] = triangle[row_num - 1][j - 1] + triangle[row_num - 1][j]
            
            # Add the completed row to the triangle
            triangle.append(row)
        
        return triangle

# Example usage:
solution = Solution()
print(solution.generate(5))  # Output: [[1], [1, 1], [1, 2, 1], [1, 3, 3, 1], [1, 4, 6, 4, 1]]
print(solution.generate(1))  # Output: [[1]]

Explanation:

  1. Imports: Import List from typing for type hinting.
  2. Class Definition: Define the Solution class with the generate method.
  3. Initialize Triangle: Start with an empty list triangle to store the rows.
  4. Outer Loop: Iterate from 0 to numRows - 1 to build each row:
    • Create a new row filled with 1s of length row_num + 1.
    • Inner Loop: For each position j from 1 to row_num - 1, update the value by summing the two values directly above it from the previous row.
  5. Append Row: Add the completed row to the triangle.
  6. Return Triangle: Return the constructed list of rows.

Solution in Javascript:

JavaScript
/**
 * @param {number} numRows
 * @return {number[][]}
 */
var generate = function(numRows) {
    // Initialize the list to hold the rows of Pascal's triangle
    let triangle = [];
    
    // Build each row
    for (let rowNum = 0; rowNum < numRows; rowNum++) {
        // Start with a row filled with 1s
        let row = new Array(rowNum + 1).fill(1);
        
        // Compute the values for the middle elements
        for (let j = 1; j < rowNum; j++) {
            row[j] = triangle[rowNum - 1][j - 1] + triangle[rowNum - 1][j];
        }
        
        // Add the completed row to the triangle
        triangle.push(row);
    }
    
    return triangle;
};

// Example usage:
console.log(generate(5));  // Output: [[1], [1, 1], [1, 2, 1], [1, 3, 3, 1], [1, 4, 6, 4, 1]]
console.log(generate(1));  // Output: [[1]]

Solution in Java:

Java
import java.util.ArrayList;
import java.util.List;

class Solution {
    public List<List<Integer>> generate(int numRows) {
        // Initialize the list to hold the rows of Pascal's triangle
        List<List<Integer>> triangle = new ArrayList<>();
        
        // Build each row
        for (int rowNum = 0; rowNum < numRows; rowNum++) {
            // Initialize the current row with 1s
            List<Integer> row = new ArrayList<>();
            for (int i = 0; i <= rowNum; i++) {
                row.add(1);
            }
            
            // Compute the values for the middle elements
            for (int j = 1; j < rowNum; j++) {
                int sum = triangle.get(rowNum - 1).get(j - 1) + triangle.get(rowNum - 1).get(j);
                row.set(j, sum);
            }
            
            // Add the completed row to the triangle
            triangle.add(row);
        }
        
        return triangle;
    }

    // Main method for testing
    public static void main(String[] args) {
        Solution solution = new Solution();
        System.out.println(solution.generate(5));  // Output: [[1], [1, 1], [1, 2, 1], [1, 3, 3, 1], [1, 4, 6, 4, 1]]
        System.out.println(solution.generate(1));  // Output: [[1]]
    }
}

Solution in C#:

C#
using System;
using System.Collections.Generic;

public class Solution {
    public IList<IList<int>> Generate(int numRows) {
        // Initialize the list to hold the rows of Pascal's triangle
        IList<IList<int>> triangle = new List<IList<int>>();
        
        // Build each row
        for (int rowNum = 0; rowNum < numRows; rowNum++) {
            // Initialize the current row with 1s
            List<int> row = new List<int>(new int[rowNum + 1]);
            row[0] = 1;
            row[rowNum] = 1;
            
            // Compute the values for the middle elements
            for (int j = 1; j < rowNum; j++) {
                int sum = triangle[rowNum - 1][j - 1] + triangle[rowNum - 1][j];
                row[j] = sum;
            }
            
            // Add the completed row to the triangle
            triangle.Add(row);
        }
        
        return triangle;
    }

  
    
}

Subscribe
Notify of

0 Comments
Oldest
Newest Most Voted
Inline Feedbacks
View all comments

Popular