HomeLeetcodeSearch Insert Position (Array) - Solutions

Search Insert Position (Array) – Solutions

Description:

Given a sorted array of distinct integers and a target value, return the index if the target is found. If not, return the index where it would be if it were inserted in order.

You must write an algorithm with O(log n) runtime complexity.

Examples:

Example 1:

Input: nums = [1,3,5,6], target = 5
Output: 2

Example 2:

Input: nums = [1,3,5,6], target = 2
Output: 1

Example 3:

Input: nums = [1,3,5,6], target = 7
Output: 4

Solution in Python:

To solve this problem with O (log n) runtime complexity, we need to use a binary search algorithm. Here is the implementation in Python with detailed comments explaining each step.

Python
class Solution:
    def searchInsert(self, nums: List[int], target: int) -> int:
        # Initialize the left and right pointers for the binary search
        left, right = 0, len(nums) - 1
        
        # Perform binary search
        while left <= right:
            # Calculate the middle index
            mid = (left + right) // 2
            
            # If the target is found, return the middle index
            if nums[mid] == target:
                return mid
            # If the target is less than the middle element, search the left half
            elif nums[mid] > target:
                right = mid - 1
            # If the target is greater than the middle element, search the right half
            else:
                left = mid + 1
        
        # If the target is not found, 'left' will be the insertion point
        return left

# Example usage
solution = Solution()
print(solution.searchInsert([1, 3, 5, 6], 5))  # Output: 2
print(solution.searchInsert([1, 3, 5, 6], 2))  # Output: 1
print(solution.searchInsert([1, 3, 5, 6], 7))  # Output: 4

Explanation:

  1. Initialization:
    • We initialize two pointers, left and right, to the start and end of the list respectively.
    • left starts at index 0, and right starts at the last index of the list (len(nums) - 1).
  2. Binary Search Loop:
    • We enter a loop that continues until left exceeds right.
    • Inside the loop, we calculate the middle index mid using integer division to ensure we get an integer result.
  3. Comparison:
    • We compare the element at the middle index nums[mid] with the target.
    • If nums[mid] equals the target, we return mid because we’ve found the target.
    • If nums[mid] is greater than the target, we update right to mid - 1 to search the left half of the list.
    • If nums[mid] is less than the target, we update left to mid + 1 to search the right half of the list.
  4. Insertion Point:
    • If the loop exits without finding the target, left will be the index where the target should be inserted to maintain sorted order.
    • We return left as the insertion point.

Solution in Javascript:

JavaScript
/**
 * @param {number[]} nums
 * @param {number} target
 * @return {number}
 */
var searchInsert = function(nums, target) {
    // Initialize the left and right pointers for the binary search
    let left = 0;
    let right = nums.length - 1;

    // Perform binary search
    while (left <= right) {
        // Calculate the middle index
        let mid = Math.floor((left + right) / 2);

        // If the target is found, return the middle index
        if (nums[mid] === target) {
            return mid;
        }
        // If the target is less than the middle element, search the left half
        else if (nums[mid] > target) {
            right = mid - 1;
        }
        // If the target is greater than the middle element, search the right half
        else {
            left = mid + 1;
        }
    }

    // If the target is not found, 'left' will be the insertion point
    return left;
};

// Example usage
console.log(searchInsert([1, 3, 5, 6], 5));  // Output: 2
console.log(searchInsert([1, 3, 5, 6], 2));  // Output: 1
console.log(searchInsert([1, 3, 5, 6], 7));  // Output: 4
console.log(searchInsert([1, 3, 5, 6], 0));  // Output: 0

Solution in Java:

Java
class Solution {
    public int searchInsert(int[] nums, int target) {
        // Initialize the left and right pointers for binary search
        int left = 0;
        int right = nums.length - 1;
        
        // Perform binary search
        while (left <= right) {
            // Calculate the middle index
            int mid = left + (right - left) / 2;
            
            // If the target is found at mid, return mid
            if (nums[mid] == target) {
                return mid;
            }
            // If target is less than the middle element, search in the left half
            else if (nums[mid] > target) {
                right = mid - 1;
            }
            // If target is greater than the middle element, search in the right half
            else {
                left = mid + 1;
            }
        }
        
        // If the loop exits without finding the target, 'left' will be the insertion point
        return left;
    }

    // Example usage
    public static void main(String[] args) {
        Solution solution = new Solution();
        
        int[] nums1 = {1, 3, 5, 6};
        int target1 = 5;
        System.out.println(solution.searchInsert(nums1, target1)); // Output: 2
        
        int[] nums2 = {1, 3, 5, 6};
        int target2 = 2;
        System.out.println(solution.searchInsert(nums2, target2)); // Output: 1
        
        int[] nums3 = {1, 3, 5, 6};
        int target3 = 7;
        System.out.println(solution.searchInsert(nums3, target3)); // Output: 4
    }
}

Solution in C#:

C#
public class Solution {
    public int SearchInsert(int[] nums, int target) {
        // Initialize the left and right pointers for binary search
        int left = 0;
        int right = nums.Length - 1;
        
        // Perform binary search
        while (left <= right) {
            // Calculate the middle index
            int mid = left + (right - left) / 2;
            
            // If the target is found at mid, return mid
            if (nums[mid] == target) {
                return mid;
            }
            // If target is less than the middle element, search in the left half
            else if (nums[mid] > target) {
                right = mid - 1;
            }
            // If target is greater than the middle element, search in the right half
            else {
                left = mid + 1;
            }
        }
        
        // If the loop exits without finding the target, 'left' will be the insertion point
        return left;
    }

}

Subscribe
Notify of

0 Comments
Oldest
Newest Most Voted
Inline Feedbacks
View all comments

Popular